

Nachhaltiges Wirtschaften in Wertschöpfungsnetzwerken

KOOPERATIONEN NEU DENKEN – Netzwerke schaffen mehr Wertschöpfung & Nachhaltigkeit

25. April 2023, Prof. Dr. Karsten Kieckhäfer

Agenda

Ökonomische, ökologische und soziale Herausforderungen in globalen Wertschöpfungsnetzwerken Fallbeispiel: Gestaltung nachhaltiger Wertschöpfungsnetzwerke für Lithium-Ionen-Batterien Treiber der ökologischen und sozialen Transformation von Wertschöpfungsnetzwerken Hürden der Zusammenarbeit in nachhaltigen Wertschöüfungsnetzwerken

Folie 2 25.04.2023 Univ.-Prof. Dr. Karsten Kieckhäfer

Supply Chain Management: Aktuelle ökonomische Herausforderungen

Lieferengpässe in der Presse

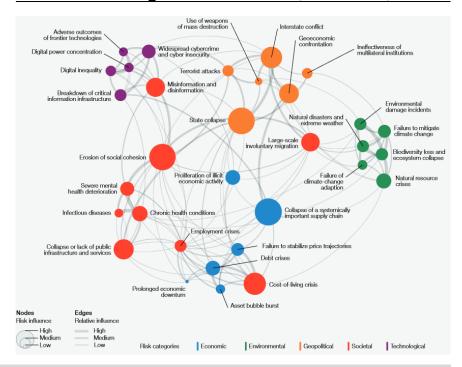
28. November 2022 | Die Zeit

Lieferengpässe kosteten Industrie 64 Milliarden Euro an Wertschöpfung

Die Produktionseinbußen durch den Mangel an Vorprodukten waren enorm und betrafen vor allem Autokonzerne. Lieferketten müssten deutlich robuster werden, mahnen Experten. [...]

25. Mai 2022 | Harvard Business manager

Wie lange lohnen sich globale Lieferketten noch?

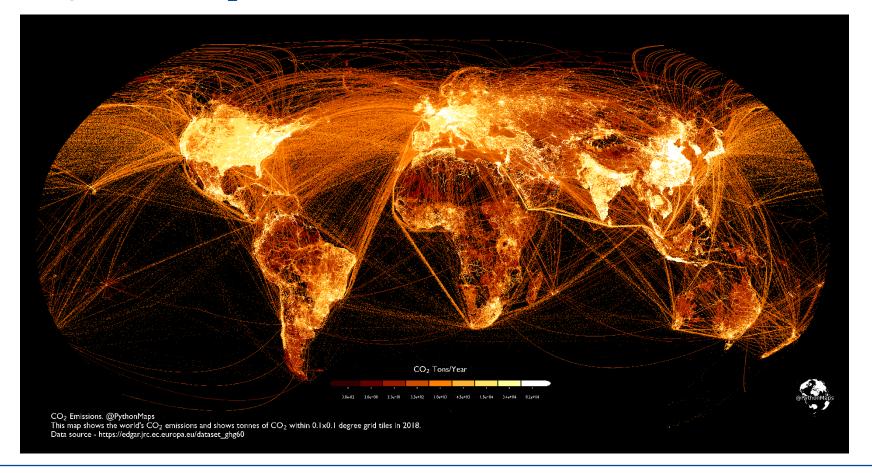

Der Druck auf die Lieferketten hat sich mit dem Ukraine-Krieg weiter verschärft. Lange Wege für billige Arbeitskräfte in Kauf zu nehmen – diese Rechnung geht nicht mehr auf. Unternehmen müssen neue Strategien entwickeln. [...]

30. Juni 2022 | Logistik Heute

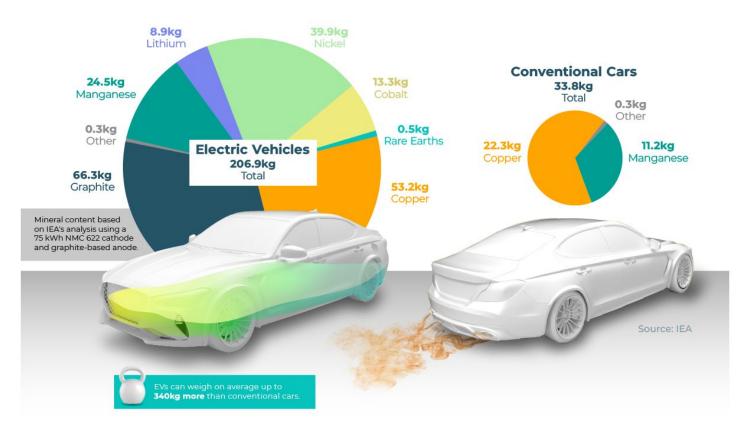
Engpässe: Neun kritische Mineralien bremsen Lieferketten aus

Laut einer Erhebung des Ifo Instituts sind Lieferkettenstörungen bei bestimmten Mineralien besonders problematisch, da einseitige Abhängigkeiten nach China bestehen. [...]

Landkarte der globalen Risiken (WEF 2023)



Ökonomische, ökologische und soziale Herausforderungen in Supply Chains immer stärker miteinander verbunden

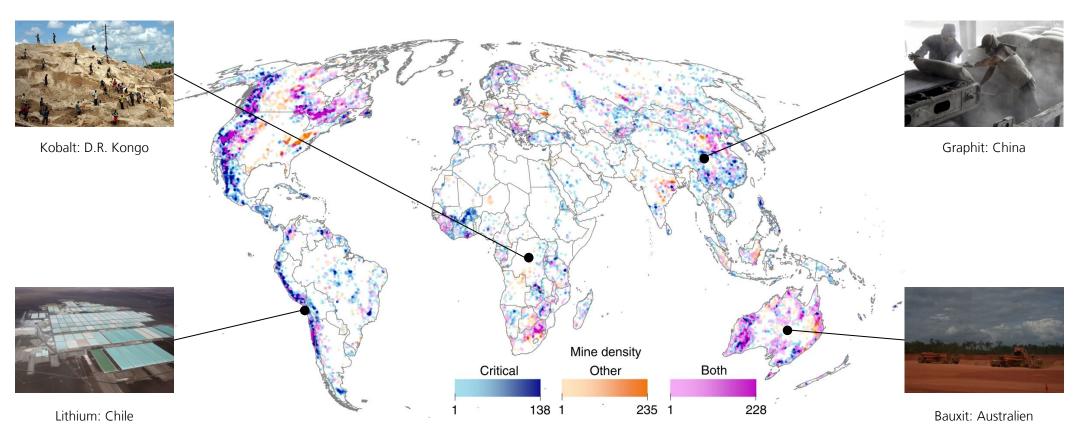


Hotspots globaler CO₂-Emissionen

Einsatz ausgewählter Rohstoffe: Elektroautos vs. konventionelle Autos

https://www.visualcapitalist.com/sp/how-mineral-supply-will-change-ev-forecasts/

Elektrofahrzeuge: Geographische Verteilung der globalen Wertschöpfung



https://www.visualcapitalist.com/sp/how-mineral-supply-will-change-ev-forecasts/

Soziale und ökologische Hotspots der Rohstoffgewinnung und -verarbeitung

Sonter et al. (2020)

Bezugsrahmen Lebenszyklusorientierte Nachhaltigkeitsbewertung

Produktgestalt

Technologien

Materialien

Strukturen

Geometrie

Entschei-

Wirkungen

Ökologische Aspekte

Life Cycle

Assessment

(LCA)

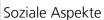
- Klimawandel
- Versauerung
- Eutrophierung
- Ozonabbau

Life Cycle Sustainability Assessment (LCSA)

Life Cycle Costing (LCC)

Ökonomische Aspekte

- Lebenszykluskosten
- Wertschöpfung
- Gewinne
- Zahlungsströme



Entschei-

dungen

Wirkungen

Social Life Cycle Assessment (SLCA)

- Arbeitsbedingungen
- Chancengleichheit
- Lokale Beschäftigung
- Fairer Wettbewerb

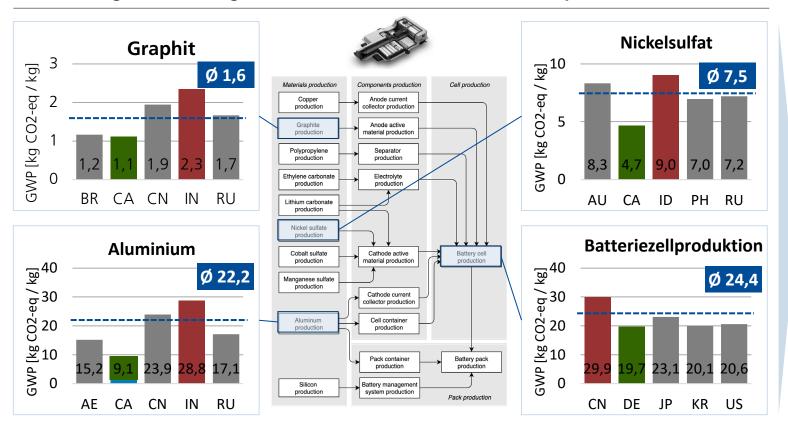
Standorte

Technologien

Lieferanten

Distribution

Recycling



Thies et al. (2018); Kloepffer (2008); UNEP/SETAC (2011)

Bewertung und Vergleich von Supply Chains für Traktionsbatterien (1/3)

Ländervergleich für ausgewählte Produktionsaktivitäten (Beispiel: Klimawandel)

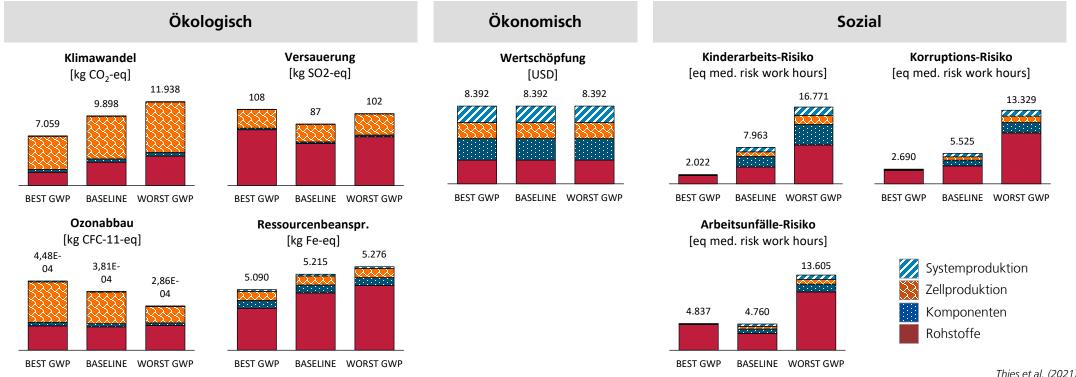
SC-Konfigurationen

BEST GWP

Prozesse in Ländern mit geringstem GWP-Wert

BASELINE

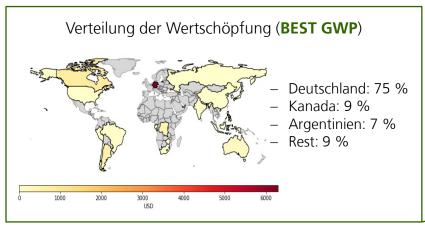
Prozesse in Ländern anhand durchschnittlichem Produktionsmix (2018)

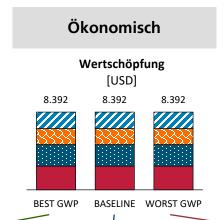

WORST GWP

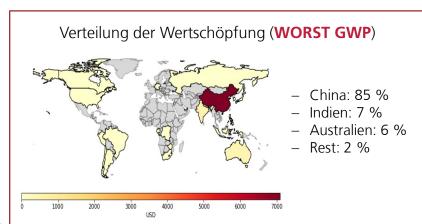
Prozesse in Ländern mit höchstem GWP-Wert

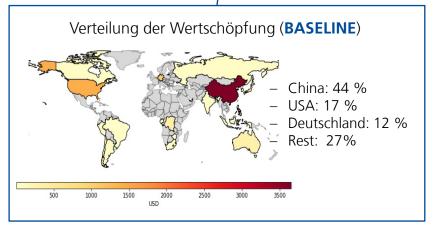
Thies et al. (2021)

Bewertung und Vergleich von Supply Chains für Traktionsbatterien (2/3)

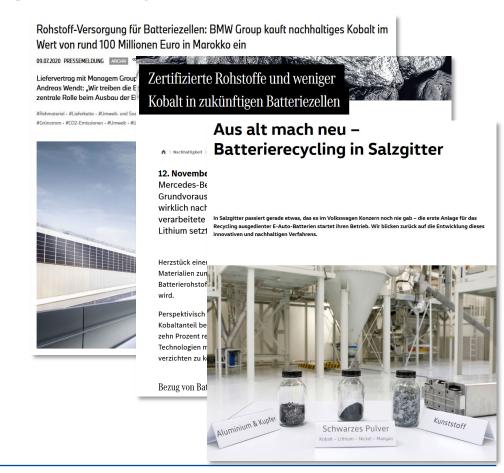

Thies et al. (2021)


Im Vergleich zu BASELINE variieren ökologische Auswirkungen um +/- 30 % und soziale Auswirkungen um −75 % bis +185 %. Rohstoffe und Zellproduktion tragen maßgeblich zu den Auswirkungen bei.


Folie 10 25.04.2023 Univ.-Prof. Dr. Karsten Kieckhäfer

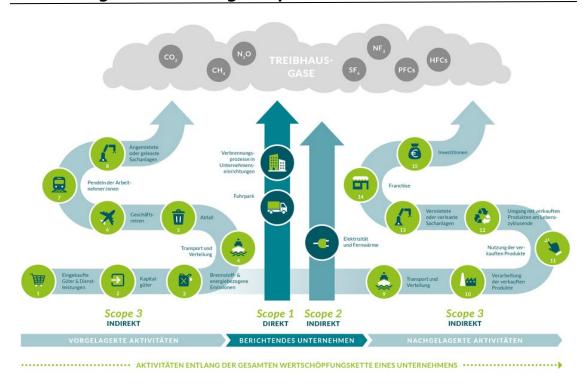


Bewertung und Vergleich von Supply Chains für Traktionsbatterien (3/3)



Thies et al. (2021)

Ansatzpunkte für die Gestaltung nachhaltiger Supply Chains


- Rohstoffbeschaffung und Zellproduktion in Ländern bzw. von Lieferanten mit geringem Fußabdruck
- Gezielte Verbesserung von Technologien und Arbeitsbedingungen in den "Hotspots"
- Kreislaufführung von Batterierohstoffen durch "Closed-Loop Supply-Chains"

CO₂-Neutralität entlang der Wertschöpfungskette

Treibhausgasbilanzierung: Scopes

CO₂-Neutralitätsbemühungen von Unternehmen

- Über 700 der 2.000 größten börsennotierten
 Unternehmen der Welt wollen CO₂-neutral werden (Stand: 01. Juli 2022)
- Scope-3-Emissionen bleiben bisher vielfach unberücksichtigt, allerdings entfallen teilweise über 90 % der Emissionen auf diesen Bereich

Auswirkungen auf Lieferanten und die Zusammenarbeit in Wertschöpfungsnetzwerken?

https://www.primaklima.org/fuer-unternehmen/kompensation-von-co8322-emissionen/der-co2-fussabdruck-von-unternehmen/: www.zerotracker.net/analysis

Sorgfaltspflichten in Lieferketten (Deutschland und EU)

- Stärkung von **Menschenrechten** und **Umweltschutz** in globalen Lieferketten
 - Verbot von Kinderarbeit
 - Schutz vor Sklaverei und Zwangsarbeit
 - Diskriminierungsfreiheit
 - Schutz vor widerrechtlichem Landentzug
 - Arbeits- und Gesundheitsschutz
 - Angemessene Entlohnung
 - Recht zur Bildung von Gewerkschaften
 - Verbot einer schädlichen Bodenveränderung oder Gewässerverunreinigung
 - Verbot von Quecksilber, persistenter organischer Schadstoffe und der Ausfuhr gefährlicher Abfälle

- Betrifft Unternehmen mit \geq 3.000 (bzw. 1.000 ab 2024) Arbeitnehmerinnen und Arbeitnehmern in Deutschland
- Einrichtung eines **Risikomanagements**, um u. a.
 - Risiken in Lieferketten zu ermitteln und zu bewerten.
 - Verstöße gegen Menschenrechte und Schädigungen der Umwelt zu vermeiden oder zu minimieren
- Gilt für eigenen Geschäftsbereich, unmittelbare Zulieferer und (anlassbezogen) mittelbare Zulieferer
- Noch umfassendere EU-Gesetzgebung in Vorbereitung (Corporate Sustainability Due Diligence Directive)

Auswirkungen auf Lieferanten und die Zusammenarbeit in Wertschöpfungsnetzwerken?

https://www.bmz.de/de/themen/lieferkettengesetz; https://www.bafa.de/DE/Lieferketten/Ueberblick/ueberblick_node.html

Herausforderungen der Zusammenarbeit in nachhaltigen Supply Chains

Hürden der Zusammenarbeit (Auswahl):

- Mangelndes Bewusstsein
- Mangelnde Expertise
- Mangel an Informationen
- Mangelnde Unterstützung von Akteuren im Netzwerk
- Erhebliche Anfangsinvestitionen
- Unsicherheiten bzgl. Wirtschaftlichkeit

Welchen Beitrag kann die Digitalisierung leisten?

Folie 15 25.04.2023 Univ.-Prof. Dr. Karsten Kieckhäfer

Kontakt

Univ.-Prof. Dr. Karsten Kieckhäfer

Stellvertretender Direktor Forschungsschwerpunkt Energie, Umwelt & Nachhaltigkeit https://www.fernuni-hagen.de/forschung/schwerpunkte/eun/index.shtml

FernUniversität in Hagen, Fakultät für Wirtschaftswissenschaft, Lehrstuhl für Betriebswirtschaftslehre, insb. Produktion und Logistik

Gebäude 7 (Eugen-Schmalenbach-Gebäude) Universitätsstraße 41 58097 Hagen

<u>karsten.kieckhaefer@fernuni-hagen.de</u> <u>https://www.fernuni-hagen.de/produktion-logistik/</u>

Literatur

Kloepffer, W. (2008): <u>Life cycle sustainability assessment of products</u>, in: The International Journal of Life Cycle Assessment, 13(2), 89–95.

Sonter, L.J., Dade, M. C., Watson, J. E. M. et al. (2020): Renewable energy production will exacerbate mining threats to biodiversity, in: Nature Communications 11, 4174.

Thies. C. (2021): Sustainability assessment of products with global supply chains: Methodological contributions and applications to electric mobility, Dissertation, Technische Universtität Braunschweig.

Thies, C.; Kieckhäfer, K.; Spengler, T. S. (2021): Activity analysis based modeling of global supply chains for sustainability assessment, in: Journal of Business Economics, 91(2), 215–252.

Thies, C.; Kieckhäfer, K.; Spengler, T. S.; Sodhi, M. S. (2018): <u>Spatially differentiated sustainability assessment for the design of global supply chains</u>, in: Procedia CIRP, 69, 435–440,.

UNEP/SETAC (2011): <u>Towards a life cycle sustainability assessment: making informed choices on products</u>, United Nations Environment Programme.

WEF (2023): The global risks report 2023, 18th edition, Word Economic Forum.

Folie 17 25.04.2023 Univ.-Prof. Dr. Karsten Kieckhäfer